
An Integrated Technique for Instruction

Scheduling and Register Allocation Based on

Subgraph Isomorphism

Lucas Silva, Richard Silva, and Ricardo Santos ⋆

High Performance Computing Systems Laboratory
School of Computing

Federal University of Mato Grosso do Sul
Campo Grande - MS - Brazil

{lucascsilva,richardsteffano}@gmail.com,ricardo@facom.ufms.br

http://lscad.facom.ufms.br

Abstract. This work aims at providing an integrated Instruction Schedul-
ing and Register Allocation algorithm based on Subgraph Isomorphism
theory. The proposed algorithm is based on the modelling of the hard-
ware resources of the target processor architecture as a base graph, and
the representation of the input program as DAGs with vertices repre-
senting program instructions, input, and output operands, and edges
representing the dependence among instructions. The inputs for the al-
gorithm are Directed Acyclic Graphs (DAGs) G1 of the program and a
base graph G2 that represents the target architecture. The output is a
graph G

′

2 (isomorphic to G1) representing the results of the scheduling
and register allocation.

Keywords: Instruction Scheduling, Register Allocation, LLVM

1 Introduction

It is well known that instruction scheduling and register allocation are impor-
tant phases in code generation. There are many proposals [3,4,5,6] focusing on
integrated approaches for instruction scheduling and register allocation. There
are approaches using from integer linear programming models up to multi-
commodity network flow models. Those techniques propose alternatives to solve
both phases together at the expense of poor compiler performance.

This work extends a previous proposal [2] by combining together instruc-
tion scheduling and register allocation and solving them using the Subgraph
isomorphism theory on the LLVM compiler [1]. The key aspect of our tech-
nique is the modelling of the hardware resources (functional units, register files
and their interconnections) as a base graph, and the representation of the input

⋆ The authors thank Brazilian Research Agencies CAPES, CNPq, and Fundect for
their financial support to this work and related research at the High Performance
Computing Systems Laboratory (LSCAD/FACOM/UFMS).



2 Lucas Silva, Richard Silva, Ricardo Santos

program as DAGs with vertices representing program instructions, input and
output operands, and edges representing the dependence among instructions.
The inputs for the proposed integrated algorithm are comprised of a number of
Directed Acyclic Graphs (DAG) G1 of the program and a base graph G2 that
represents the target architecture. The output is a graph G′

2
isomorphic to G1

indicating the resources used according to the scheduling and register allocation
just performed. Our technique has been used as a viable alternative to generate
code for architectures ranging from scalar, and superscalar [2] processor execu-
tion models. To demonstrate the feasibility and flexibility of the technique, we
have designed our integrated approach for the MIPS target architecture on the
LLVM compiler [1].

This paper is organized as follows: Section 2 presents our proposal for an
instruction scheduling and register allocation integrated algorithm. The exper-
iments and results are presented in Section 3. The final remarks and proposals
for future work are described in Section 4.

2 Instruction Scheduling and Register Allocation Based

on Subgraph Isomorphism

Figure 1 sketches a base graph representing the MIPS architecture [8]. For the
sake of simplicity, only four registers are presented. Vertices R1, R2, R3, and
R4 (circles) represent physical registers and vertices FU1 and FU2 (squares)
represent functional units (for ALU and MUL/DIV operations).

Fig. 1. MIPS graph represented with four registers.

Figure 2 sketches an example of subgraph isomorphism on a base graph
representing the MIPS architecture [8]. Figure 2(a) is an input DAG where
vertices a, b, d, and f (circles) represent operands inputs/outputs; vertices c
and e (squares) represent operations of instructions. Figure 2(b) shows the base
graph of the MIPS target processor unrolled to support the subgraph matching
to the input DAG. The result of the subgraph isomorphism procedure between
graphs in Figures 2(a) and 2(b) is the graph in Figure 2(c).

2.1 An Integrated Algorithm for Scheduling and Register

Allocation on the LLVM Compiler

We have carried out a set of heuristics and used the main ideas from the VF
subgraph isomorphism library [7] to design and implement our algorithm for



An Integrated Technique for IS and RA Based on Subgraph Isomorphism 3

(a) Input Graph (G1) (b) MIPS Base Graph
(G2)

(c) Resulting Graph (G′

2)

Fig. 2. Example of Subgraph Isomorphism on the MIPS base graph.

scheduling and register allocation. The VF algorithm finds an isomorphism if
there exist one and can determine the best isomorphism (optimal result).

The implementation of the algorithm has been carried out as a new pass on
the LLVM back-end. The first step of the algorithm to determine DAGs sizes
(height and width) for DAGs on each basic block. The sum of the heights and
widths of the DAGs are passed to a procedure to build up the base graph. Each
basic block calls the LLVM scheduler that builds up a graph of Schedule Units.
Then, the Schedule Units graph is passed to a topological ordering procedure.
The base graph is built using LLVM Machine function classes and unrolled ac-
cording to the procedure to determine DAGs sizes. Both graphs (Schedule Units
graph and Unrolled Base Graph) are passed to the subgraph matching engine.
The result of the matching is another graph that is reordered and passed to the
emit schedule procedure.

Inputs: a DAG G1 from a basic block, a base graph G2

Outputs: a subgraph G21’ isomorphic to the input

1) Calculate the unrolling for the base graph G2

2) Create the unrolled base graph G2

3) Perform subgraph matching between G1 and G2

4) If the matching is not possible:

4.1) if G2 is not large enough:

4.1.1) increase the unrolling factor

4.1.2) go to step 2

4.2) if there is a spill:

4.2.1) include vertices representing store and load from memory

4.2.2) update DAG G1 with vertices from 4.2.1

4.2.3) go to step 3

4.3) if a matching is not found:

4.3.1) split up the DAG under matching

4.3.2) go to step 3

5) Emit scheduled and register allocated instructions for a basic block

Algorithm 1: Steps of the integrated algorithm for scheduling and register allocation
based on subgraph isomorphism.



4 Lucas Silva, Richard Silva, Ricardo Santos

Algorithm 1 describes the main steps of our algorithm. It starts by receiving a
DAG from a basic block to the base graph size procedure (step 1) that calculates
the unrolling factor for the base graph. The unrolling factor is passed to the
base graph creation procedure (step 2). Step 3 performs the subgraph matching
between G1 and G2. Currently, the matching is performed by the VF library that
runs an exact subgraph matching algorithm (time complexity of O(V !V ), V =
max(V1, V2)) with a timeout limit. A matching may not be found (step 4) so that
the subgraph isomorphism runs a specific procedure according to the result of the
matching. If G2 is not large enough (step 4.1), the unrolling factor is increased
and the algorithm goes to step 2. If spill code is necessary (step 4.2), new vertices
representing the generated spill code are included in the DAG and the algorithm
goes to step 3. If the matching procedure cannot perform a matching according
to the time constraint (step 4.3), the algorithm splits up the DAG and goes back
to step 3. Once the matching is found, LLVM performs a step for code emission
with physical registers.

3 Preliminary Results

In this section we present some preliminary results of our integrated approach
for scheduling and register allocation on the LLVM compiler. The results are
presented in Table 1. The set of programs used for the experiment are part of
Benchmark Simple of the Trimaran compiler [10].

Programs Emitted Instructions Allocated Registers

alloca test 40 10

fact2 28 04

fib 45 09

fib mem 37 13

ifthen 66 26

local var test 40 15

longlong 25 10

mm 110 36

struct test 63 28

swtich test 508 112
Table 1. Results of the Scheduling and Register allocation based on Subgraph Isomor-
phism.

Table 1 shows the number of emitted instructions and registers usage for
each program. We have performed the same experiment (same programs and
inputs) using the basic and greedy registers allocators and the fast scheduling
algorithm available in the LLVM compiler (version 2.9 and 3.0). The combination
fast+basic and fast+greedy algorithms provide the same number of instructions
and registers of our technique. The fast+basic strategy has a performance better



An Integrated Technique for IS and RA Based on Subgraph Isomorphism 5

than isomorphism strategy ranging from 10ms-25ms (average compilation run-
time is 49ms for isomorphism and 37ms for fast+basic). No spill codes have been
generated for all evaluated programs.

4 Final Remarks

An integrated approach for instruction scheduling and register allocation was
presented in this paper. Our approach is based on matching input DAGs to the
base graph of the architecture. The matching result is a subgraph of the base
graph isomorphic to the input DAG that represents the allocated resources to
run the DAG.

Despite not improving the performance compared to the list scheduling and
basic register allocator algorithms, our approach seems promising for instruction
scheduling and register allocation in the presence of heavy register and intercon-
nection constrained architectures. For those cases, a technique that exposes all
constraints and global resources seems to be useful to converge to better solutions
faster than greedy algorithms.

Future work is focused on finishing up the implementation of the algorithm
on the LLVM compiler to generate code for the ρ-vex processor [9] and evaluating
it on well known benchmarks from compiler and computer architecture areas.

References

1. Chris Lattner, Vikram S. Adve: LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. CGO 2004: 75-88 (2004)

2. Ricardo R. Santos, Rodolfo Azevedo, Guido Araujo: Instruction Scheduling Based
on Subgraph Isomorphism for a High Performance Computer Processor. JUCS
14(21):34653480 (2009)

3. James R. Goodman, Wei-Chung Hsu: Code scheduling and register allocation in
large basic blocks. ICS 1988: 442-452 (1988)

4. Shlomit S. Pinter: Register Allocation with Instruction Scheduling: A New Ap-
proach. PLDI 1993: 248-257 (1993)

5. Rajeev Motwani, Krishna V. Palem, Vivek Sarkar , Salem Reyen: Combining Reg-
ister Allocation and Instruction Scheduling. CS-TN-95-22 (1995)

6. Cindy Norris, Lori L. Pollock: Experiences with Cooperating Register Allocation
and Instruction Scheduling. Int. Journal of Parallel Programming 26(2): 241-283
(1998)

7. Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento: An Improved Al-
gorithm for Matching Large Graphs. Proc. of the 3rd IAPR TC15 Workshop on
Graph-Based Representations (2001)

8. David A. Patterson, John L. Hennesy: Computer Organization and Architecture: A
Hardware/Software Interface. Addison Wesley. 2nd edition (2004)

9. Sthefan Wong, Thijs van As, Geoffrey Brown: -VEX: A Reconfigurable and Exten-
sible VLIW Processor. ICFPT 2008 (2008)

10. Lakshmi N. Chakrapani, John C. Gyllenhaal, Wen-mei W. Hwu, Scott A. Mahlke,
Krishna V. Palem, Rodric M. Rabbah: Trimaran: An Infrastructure for Research in
Instruction-Level Parallelism. LCPC 2004: 32-41 (2004)


