
Strip Packing Heuristics for the DAGs Packing Problem

Eduardo Bogue1 Ricardo Santos2 Edna Hoshino2 Rubia Oliveira2

Hilda Alves3
1State University of Campinas - Campinas-SP-Brazil

2Federal University of Mato Grosso do Sul - Campo Grande-MS-Brazil
3Dom Bosco Catholic University - Campo Grande-MS-Brazil

Abstract

Consider two input graphs G1 and G2 for a subgraph isomorphism procedure where
G1 is the small graph and G2 is the large graph and the goal is to find a subgraph
G′

2 of G2 which is isomorphic to G1. In this work we deal with the problem of finding
a minimum size for G2 to be part of a subgraph isomorphism procedure where the
inputs are directed acyclic graphs (DAGs). We named this problem as DAGs Packing
Problem (DPP). In the DPP, G1 and G2 are DAGs. We have adopted an integer linear
formulation and designed heuristics for the problem. The heuristics are based on the
Strip Packing problem. The results show that the combination of heuristics to convert
DAGs into rectangles and strip packing heuristics provide good solutions (minimum
strip size) and best performance.

Keywords. dags packing, heuristics, strip packing.
Main Area. TAG - Theory and Algorithms in Graphs.TAG - Teoria e Algoritmos em

Grafos.

1

1 Introduction

Given two graphs G1 and G2, the subgraph isomorphism problem consists in finding a
subgraph G′2 of G2 which is isomorphic to G1 [Garey and Johnson, 1979]. In this work,
we deal with the problem of determining the minimum size for graph G2 such that is still
possible to find G′2. We named this problem as the DAGs Packing Problem (DPP). In the
context of DPP G1 is called an input graph and G2 is named a base graph. Input graphs
can be seen as items to be packed, and the base graphs are the bins where the items should
fit.

The DPP is applied in different research areas such as graph theory and optimization.
It meets some application in the compiler area as a procedure for scheduling program
instructions into a set of processing elements. In that context, the program instructions are
grouped in DAGs (items) and the processing elements are organized as a graph representing
the resources interconnection (bin). Despite the similarities to the bin-packing problem,
the classical bin-packing does not match very well to DPP when applied to the context of
compilers. We have to consider sets of processing elements as an unique element to pack
the DAGs. Moreover, we can combine sets of processing elements together to form up a
new larger set to pack a DAG. The height of this new larger graph represents the execution
time and the width the amount of available resources simultaneously. These characteristics
make DPP akin to a variation of the bin-packing problem: the Strip Packing Problem [Baker
et al., 1980] [Han et al., 2006] [Lee and Sewell, 1999].

In this paper, we propose an integer linear programming formulation for the DPP.
Moreover, we present fast heuristics for this problem and we compare the solutions and
performance of those heuristics to the exact approach. We also present and discuss results
by solving the DPP on instances of well known benchmarks from the compiler area.

The paper is organized as follows: The DAGs Packing Problem is stated in Section 2.
We present some algorithms for converting DAGs into rectangles in Section 3. A detailed
description of the problem formulation and the proposed heuristics are described in Sec-
tion 4. Results of the experiments are presented in Section 5. Finally, Section 6 summarizes
the main conclusions and future work.

2 The DAGs Packing Problem

Definition 1: A directed graph D = (V,E) where V is the set of vertices and E is the
set of edges is acyclic if and only if there is not non-trivial connected strongly components.

That is, D is comprised of vertices and directed edges, each edge connecting one vertex
to another, such that there is no way to start at some vertex Vi and follow a sequence of
edges that eventually goes back to Vi again. DAGs may be used to model different kinds
of structure in mathematics and computer science [Bondy and Murty, 1976, Garey and
Johnson, 1979]. DAGs are used in compilers to represent programs’ data flow [Aho et al.,
2007]. In the compiler structure, the program operations are represented by the vertices
of a DAG while the data dependence among operations are represented by the edges of a
DAG.

Definition 2: In a DAG D, a vertex Vi is named root if there is not any input edge to
Vi. Similarly, a vertex Vj , i 6= j is named leaf if there is not any output edge from Vj .

Definition 3: A critical path (longest path) of a DAG D, with weights on the vertices,
is the path with the highest sum of weights.

Definition 4: The problem of determining a minimum size (minimum height) for a base
graph G2 such that G2 remains subgraph isomorphic to a set of DAGs S = (D1, D2, . . . , Dn),
where Di = (Vi, Ei),∀1 ≤ i ≤ n, is named the DAGs Packing Problem (DPP).

2

Figure 1 exemplifies the DPP on two different DAGs.

(a) Example DAGs (b) Graph G (base graph)

(c) Packing of DAGs into G.

Figure 1: Example of the DAGs Packing Problem

The DAGs in Figure 1(a) can be packed in just one base graph because: (a) nodes of
these DAGs do not have more edges than what is available for each node of the base graph
in Figure 1(b); (b) the number of nodes of the two DAGs is less than the number of nodes
in one base graph, and (c) the length of the longest path of each DAG is less than the
number of levels of the base graph.

For small DAGs is quite easy to match each vertex and edge of a DAG to their
corresponding vertex and edge of G. However, considering DAGs as a basic tool for
modelling dataflow of real-world applications, the DAGs’ sizes (heights and widths) depend
on the program’s characteristics and some applications have more than 100k DAGs with
up to 300 vertices each [Santos et al., 2007]. It is necessary to come up with solutions
that can map the whole DAG to the graph and, most important, to organize the amount
of DAGs under the same graph. In the context of compilers, one DPP application of
particular interest is the code generation process performed by compilers for today computer
processors. Current computer processor architectures have several hardware resources
available to programs’ operations. Since DAGs represent the dataflow of programs, it seems
straight to map whole DAGs on the processor resources in order to improve the hardware
elements usage at runtime. On the other hand, it is a challenge to handle whole DAGs
instead of one simple operation (one vertex) by the back-end compiler.

One possible approach to suitably resize a base graph is to represent input DAGs as
rectangles and the base graph as a strip of fixed width and infinite height. The problem
of matching DAGs moves to another problem aiming at packing those rectangles onto the
strip in order to get of minimum height. This is named the Strip Packing Problem and there
are heuristics [Han et al., 2006,Imreh, 2001,Lee and Sewell, 1999,Chazelle, 1983,Kenmochi
et al., 2009,Ntene and van Vuuren, 2006] and linear programming models proposed for this
problem. Before solving the strip packing, we have observed that DAGs can be converted
into rectangles on different ways.

One requirement to carry out efficient heuristics to solve the packing of DAGs into a
larger graph comes from the time complexity of the “unrolling task”. The unrolling task is
the step performed after the strip packing, were the base (large) graph must be enlarged
in order to be matched to the input DAGs. Given the size of the original input graph,
the unrolling task can be a time-consuming activity and it makes it necessary to set a

3

minimum unrolling according to the input DAGs. For instance, edges grow quadratically
on the number of vertices [Santos et al., 2007].

Enlarging a base graph is obtained by stacking together copies of the base graph
thus creating a new larger base graph able to pack all input DAGs. This “graph stack”
combination represents the availability of the resources (vertices and edges) along the time
and it is performed by putting each resource on top of the previous one. Figure 2 shows how
an “unrolled” base graph is obtained. The original base graph is a 4× 4 matrix of vertices
where each vertex i has two output edges for vertices (i + 4mod16) and (i + 5mod16). For
simplicity, we are not representing all the edges between vertices as we increase the graph.

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Input Graphs Unrolled Base Graph

Figure 2: An example of the packing of three DAGs onto an unrolled base graph.

3 Heuristics for Converting DAGs into Rectangles

Consider S the set of input DAGs and G the “unrolled” base graph in the context of
DPP. As mentioned before, we represent G as a strip with fixed width and infinite height.
The goal of the heuristics to convert DAGs into rectangles is to provide suitable rectangles
for solving the strip packing problem. The challenge is how to convert DAGs in S into
rectangles in such way to minimize the height necessary to packing all of them in the strip.
The design of the heuristics below is primarily based on the Breadth-First Search (BFS)
algorithm so that the worst-case complexity for all heuristics is O(|V |+ |E|).

3.1 Complete DAG

Given the set of DAGs S, the Complete DAG approach converts each DAG Di in S into
a single rectangle, whose height is the value of the longest path (critical path) of Di and its
width is given as the amount of vertices of the largest level of Di. Notice that finding the
longest path of a weighted DAG can be solved in linear time using an algorithm for tree
traversal.

4

Figure 3 shows the transformation of a DAG into a rectangle using the Complete-DAG
approach.

(a) Input Dag (b) Rectangle 3× 3

Figure 3: Example of a conversion of a DAG into a rectangle using the Complete-DAG
approach.

In Figure 3, we can observe that, although three resources are allocated, only one of
them is used in the second level, and two are used in the third level.

3.2 Level DAG

The Level DAG approach proposes the creation of n rectangles R1,R2, . . ., Rn for each
DAG Di in S, where n is the number of levels of Di. For each level, we calculate its height
through the vertex of highest weight of the level and width as the number of vertices of the
level. Furthermore, we store the precedence between the rectangles, where Ri−1 must be
packaged before Ri, ∀i ∈ {2, . . . , n}.

Figure 4 presents three rectangles, with sizes 3× 1, 1× 1, and 2× 1, obtained using the
Level DAG approach to the same DAG showed in Figure 3. We can notice that the sum of
areas of rectangles R1, R2, R3 is less than the area of the rectangle of the Complete-DAG
heuristic.

(a) Input DAG (b) 3 rectangles (3 × 1, 1 ×
1, and 2× 1)

Figure 4: Example of converting a DAG into rectangles using the Level-DAG approach.

3.3 Perfect Level DAG and Perfect Union Level DAG

For the Level DAG heuristic, there are cases where the sum of the height of the rectangles
is greater than that obtained in the Complete DAG approach. Figures 5(a) and 5(b) show
some examples. In Example 1, the summation of height is 13 for all rectangles obtained by
the Level DAG whilst the single rectangle obtained using the Complete DAG approach has

5

height 12. The second example shows a DAG where Level DAG creates rectangles whose
height summation is 14 and the single rectangle obtained by Complete DAG has height
equal to 11.

(a) Example 1 (b) Example 2

Figure 5: Two examples where the solutions of the Complete DAG approach are better
than the Level DAG approach.

The worst solution of Level DAG is that the heuristic does not take the precedence of
the vertices, in each level, into account. The Perfect Level DAG approach takes advantage
of this by separating all vertices in oriented sequences of weight = 1 thus preventing the
influence of a vertex that does not belong to the critical path.

Initially, we calculate the critical path to find out the number of levels. Then, for every
vertex Vi with weight WVi > 1, we split vertex Vi into an oriented sequence of PVi vertices of
weight 1. After that, we apply the algorithm of the Level DAG approach. Despite solving
the problem of increasing height, we have noticed a significant increase in the number of
levels. In order to minimize the number of levels, an optimization on the Perfect Level DAG
heuristic is adopted. The optimization is named Perfect Union Level DAG and it performs
the union of levels that have the same area (height and width) since the precedence of levels
is preserved.

Using the example in Figure 5(a), we demonstrate the approach using Perfect Level Dag
and Perfect Union Level Dag in Figures 6(a) and 6(b), respectively.

4 Heuristics for DAGs Packing

In this section we present heuristics to the DAGS Packing Problem and an integer
programming formulation, based on the strip packing problem, which has been used to
solve the DPP.

4.1 Bottom Left

Bottom Left (BL) is a heuristic that can be used for solving strip packing problems.
The design of BL has a O(n2), n = number of rectangles, time complexity [Chazelle, 1983].
Initially the rectangles of a set I are sorted in decreasing order of width. Each rectangle
Ri ∈ I is packed closest to the bottom left of the strip. Bottom Left is not an algorithm
oriented by levels. Figure 7 shows an example using the Bottom Left approach.

6

(a) Results of
the Perfect Level
DAG approach.

(b) Results of the
Perfect Union Level
DAG approach.

Figure 6: Results of Perfect Level DAG and Perfect Union Level DAG heuristics.

Figure 7: Example of rectangle packing using heuristic BL.

In the context of the DPP, we have adopted the Bottom Left heuristic together with
Complete DAG heuristic. Complete DAG converts each DAG into a rectangle that can be
an input for the Bottom Left heuristic. Section 5 presents the results of the combination
between Complete DAG and Bottom Left heuristics.

4.2 DPacking

Classical heuristics for the packing problem such as Best-Fit and First-Fit [Valenzuela
and Wang, 2001] are not able to solve the packing problem with constraints on precedence
of rectangles. Such precedence arises when heuristics Level DAG, Perfect Level DAG and

7

Perfect Union Level DAG are used to convert DAGs into rectangles. To deal with this
problem, we propose a new packing heuristic called DPacking.

DPacking heuristic is based on the algorithm for the maximum subset sum problem
(MSSP) using dynamic programming [Martello and Toth, 1990]. Given an integer c and a
set of integers X, the MSSP consists in finding a subset X ′ ⊆ X such that the sum of the
integers in X ′ is maximum and less than c. The MSSP is a special case of the knapsack
problem, where the values of items are equal to their weights. The MSSP based on dynamic
programming has a pseudo-polynomial time complexity.

Let a set of DAGs S converted into rectangles and an “unrolled” base graph G repre-
sented by a strip with fixed width W . The DPacking heuristic selects a set S′ ⊂ S and it
finds a subset of rectangles in S′ (whose sum of width is closer to W) to be packed first.
The rectangles selected to be in S′ are those that satisfy the precedence of rectangles. In
fact, all rectangles related to the lowest levels of the DAGs are selected first. The heuristic
runs this procedure successively until all rectangles have been packed.

Figure 8 presents three DAGs and the levels (rectangles) of each DAG are numbered
sequentially. Figure 9 shows the result of packing the three DAGs using the DPacking
heuristic.

(a) DAG 1 (b) DAG 2 (c) DAG 3

Figure 8: Three DAGs converted into five rectangles.

Figure 9: Packing DAGs with rectangle precedences using DPacking.

4.3 ILP Model Formulation

In this section we present the integer linear programming (ILP) formulation proposed
by [Lee and Sewell, 1999] for the Strip Packing problem. To apply the formulation to solve
the DPP, we first convert DAGs into rectangles using heuristics described in Section 3.

8

Let I = {R1, R2, . . . , Rn} be a set of n rectangles. Each rectangle Ri ∈ I, has width
WRi and height HRi . The problem of rectangles packing requires that n rectangles are
placed in a strip of width W , without overlapping, minimizing the height of the strip.

The proposed model uses four decision variables xlRi , ylRi , xuRi and yuRi , for each
rectangle Ri. Variables xlRi and ylRi (xuRi and yuRi) refer to coordinates of the lower
left (upper right) corner where rectangle Ri is placed. The value of the HMIN variable
represents the height of the strip to be minimized. Moreover, two binary variables, l and b,
are defined for each pair of rectangles in such way that lRiRj is 1 if and only if the rectangle
Ri is left of Rj and bRiRj is 1 if and only if Ri is below Rj .

(F) minHMIN

subject to xuRi ≤W , ∀Ri ∈ I (1)

yuRi ≤ HMIN , ∀Ri ∈ I (2)

xuRi = xlRi + WRi , ∀Ri ∈ I (3)

yuRi = ylRi + HRi , ∀Ri ∈ I (4)

xuRi ≤ xlRj + W (1− lRiRj) , ∀Ri, Rj ∈ I such that Ri 6= Rj (5)

yuRi ≤ ylRj + H(1− bRiRj) , ∀Ri, Rj ∈ I such that Ri 6= Rj (6)

lRiRj + lRjRi + bRiRj + bRjRi ≥ 1 , ∀Ri, Rj ∈ I such that Ri < Rj (7)

HMIN, xuRi , xlRi , yuRi , ylRi ≥ 0 , ∀Ri ∈ I (8)

lRiRj , bRiRj ∈ {0, 1} , ∀Ri, Rj ∈ I. (9)

Constant H is an upper bound to HMIN that is the sum of the heights of all rectangles.
Constraints (1) and (2) restrict the packing coordinates of each rectangle to the area (width
and height) of the strip. The lower left corner coordinates are defined in (3) and (4).
Constraints (5) and (6) avoid overlapping of rectangles. Constraints (7) require each pair of
rectangles to have a spatial relationship. Constraints (8) require the result and coordinates
variables to be positive. Finally, (9) are integrality constraints.

The model proposed in [Lee and Sewell, 1999] takes individual rectangles to be packed
on the strip. The model can be adapted to solve Strip Packing Problem when there exists
precedence between rectangles, however. In that case, we should set variable bRiRj = 1 if
rectangle Ri must be packed before Rj .

5 Experiments and Results

This section presents the experiments on the heuristics and the ILP model for the
DAGs packing problem. The experiments have used DAGs extracted out of programs from
well known benchmarks (SPECint and Mediabench) from the computer architecture and
compiler areas. The strip has a width equals 4 for all experiments.

Table 1 shows the number of rectangles obtained from each heuristic described in
Section 3 for the evaluated programs.

In Table 1, it is worth noting that the number of rectangles of heuristic Complete DAG
is the number of DAGs from each program, since Complete DAG performs 1 (DAG) to 1
(rectangle) conversions. Heuristics Level DAG and Perfect Level (PL) create, on average,
1.5×−4.6× more rectangles than Complete DAG. Despite not been shown, heuristic Perfect
Union Level (PUL) has the best performance among the heuristics (11 out of 12 programs).
The average runtime for all heuristics is less than 1 second for the evaluated programs. The

9

Programs Complete-DAG Level-DAG Perfect-Level Perfect-Union-Level
168 8,106 16,513 21,055 10,943
175 44,190 86,341 101,170 59,389
181 7,578 16,572 19,140 11,791
197 54,748 105,599 117,172 72,288
255 50,842 89,689 97,914 61,527
256 16,700 35,847 41,157 26,026
433 202 307 532 223
458 181 329 351 203
464 82 172 208 134
470 961 1,821 2,604 1,080

pegwit 60 249 280 162
rasta 393 743 974 513

Table 1: Number of rectangles for instances from Benchmarks SPEC and MediaBench.

performance experiments were run on a Core 2 Duo processor 2.8GHz with 4GB of RAM,
and Linux Operating System version 3.4.

Table 2 presents the height of the strip by combining the rectangles conversion heuristics
and packing heuristics. All the experiments using the DPacking heuristic were performed
together with the PL heuristic. Based on previous experiments, the combination DPack-
ing+PL heuristics has achieved the best results when compared to the DPacking+Level
DAG and DPacking+PUL heuristics.

Programs Complete DAG Perfect Level % Improvement
Bottom Left DPacking

168 8,663 5,227 39.7
175 53,682 31,282 41.7
181 9,911 4,555 54
197 55,939 28,243 49.5
255 42,643 37,520 12
256 22,014 11,257 48.9
433 146 68 63.4
458 131 125 4.6
464 113 83 26.5
470 734 225 69.3

pegwit 274 61 77.7
rasta 397 362 8.8

Average 7,969.7 13,016.7 34.2

Table 2: Height of the Strip: DPacking and Bottom Left.

In Table 2, the combination between heuristics PL and DPacking have achieved the
best results (shorter height of the strip) for all cases. The improvement of DPacking over
Bottom Left (fourth column) is up to 77.7% and the average improvement is 34.2%. The
results show that real programs have DAGs with complex geometries so that even a simple
heuristic such as DPacking can bring better results for the problem when compared to a
classical heuristic that does not take the DAG level geometry into account.

It is worth notice that there is not a significant performance difference between bottom
left and DPacking. The average runtime of Bottom left is 5.3×10−2 seconds and DPacking
is 6.6× 10−1 seconds.

10

We have performed experiments comparing the ILP model to the strip packing heuristics
for a specific set of programs. Despite performing experiments considering all programs,
the ILP model has found the solution, according to the time constraint (1 hour), only for
168, 181, and 401 programs. Table 3 presents results of the ILP model considering DAGs
from specific functions of programs 168, 181, and 401 (complete). The “*” in the first row
means that the ILP model has not found the solution according to the time constraint.

Functions Complete DAG Complete DAG Perfect Level Perfect Level
ILP Model Bottom-Left ILP Model DPacking

168
dcabs1 11 11 * *
lsame 36 36 32 32

wupwise 06 06 05 05
181

bea is dual infeasible 11 11 11 11
primal update flow 38 38 37 37

bea compute red cost 10 10 10 10
flow org cost 77 77 77 77

compute red cost 08 08 08 08
401

maingtu blocksort 242 242 242 242

Table 3: Height of the Strip: ILP Model, Bottom-Left, and DPacking.

In Table 3, the input DAGs have been converted into rectangles using heuristics Com-
plete DAG and PL. For each conversion heuristic, we have performed experiments con-
sidering the ILP model and the packing heuristics. The solutions provided by the ILP
formulation with a PL conversion heuristic are equal to the result from the DPacking
heuristic for all evaluated DAGs. Despite being experimented for a small set of inputs,
the results show that DPacking heuristic is a promising approach for the DAGs Packing
problem.

6 Conclusions

In this paper, we presented a set of Strip packing heuristics to solve the DAGs Packing
Problem. Our solution approach is based on the strip packing problem so that we designed
heuristics to transform DAGs into rectangles and another set of heuristics to pack those
rectangles into a strip.

The results show that a proper combination of conversion and packing heuristics bring
good solutions and performance. The combination between Perfect Level and DPacking has
provided the best results when compared to the Bottom Left heuristic (average improvement
of 34.2% on the strip height). The DPacking heuristic has achieved the same results of the
ILP model. The performance of Bottom Left and DPacking are quite the same and better
than the performance of the ILP model. Program 401 has been packed in 4ms using
DPacking and Bottom Left, and 222ms using the ILP model.

Future work is focusing on the evaluation the ILP model formulation for a wide range
of datasets. The integration of the conversion and packing heuristics to a compiler software
is under development.

11

7 Acknowledgments

The authors would like to thank Brazilian Research Agencies CAPES, CNPq, and
Fundect-MS for their financial support to this work and research projects in the High
Performance Computing Systems Laboratory (LSCAD) of the School of Computing/UFMS.
The authors also thank the anonymous reviewers for their feedback to this work.

References

[Aho et al., 2007] Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2007). Compilers
- Principles, Techniques, & Tools. Addison Wesley, 2 edition.

[Baker et al., 1980] Baker, B. S., Coffman, E. G., and Rivest, R. L. (1980). Orthogonal
Packing in Two-Dimensions. SIAM Journal on Computing, 9(4):846–855.

[Bondy and Murty, 1976] Bondy, J. A. and Murty, U. S. R. (1976). Graph Theory with
Applications. The Macmillan Press.

[Chazelle, 1983] Chazelle, B. (1983). The bottom-left bin-packing heuristic: An efficient
implementation. IEEE Transactions on Computers, 32(7):697–707.

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S. (1979). Computers and
Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company.

[Han et al., 2006] Han, X., Iwama, K., Ye, D., and Zhang, G. (2006). Strip Packing vs.
Bin Packing. Technical Report TR06-112, Electronic Colloquium on Computational
Complexity Report.

[Imreh, 2001] Imreh, C. (2001). Online Strip Packing with Modifiable Boxes. Operation
Research Letters, 66:78–86.

[Kenmochi et al., 2009] Kenmochi, M., Imamichi, T., Nonobe, K., Yagiura, M., and
Nagamochi, H. (2009). Exact algorithms for the 2-dimensional strip packing problem
with and without rotations. European Journal of Operational Research, 198:73–83.

[Lee and Sewell, 1999] Lee, H. F. and Sewell, E. C. (1999). The Strip-Packing Problem for
a Boat Manufacturing Firm. IIE Transactions, 31(7):639–651.

[Martello and Toth, 1990] Martello, S. and Toth, P. (1990). Knapsack Problems: Algo-
rithms and Computer Implementations. John Wiley & Sons.

[Ntene and van Vuuren, 2006] Ntene, N. and van Vuuren, J. H. (2006). A survey and
comparison of level heuristics for the 2d-oriented strip packing problem. Discrete
Optimization, 24:157–183.

[Santos et al., 2007] Santos, R., Azevedo, R., and Santos, R. M. O. (2007). A DAGs-
Packing Heuristic for a High Performance Processor Architecture. In Proceedings of the
39th Brazilian Symposium on Operational Research, Fortaleza-CE.

[Valenzuela and Wang, 2001] Valenzuela, C. L. and Wang, P. Y. (2001). Heuristics for
Large Strip Packing Problems with Guillotine Patterns: an Empirical Study. MIC’2001
- 4th Metaheuristics International Conference.

12

